Klein Tunneling in Graphene p-n-p Junctions
نویسندگان
چکیده
منابع مشابه
Evidence for Klein tunneling in graphene p-n junctions.
Transport through potential barriers in graphene is investigated using a set of metallic gates capacitively coupled to graphene to modulate the potential landscape. When a gate-induced potential step is steep enough, disorder becomes less important and the resistance across the step is in quantitative agreement with predictions of Klein tunneling of Dirac fermions up to a small correction. We a...
متن کاملGuided plasmons in graphene p-n junctions.
Spatial separation of electrons and holes in graphene gives rise to the existence of plasmon waves confined to the boundary region. A theory of such guided plasmon modes within hydrodynamics of electron-hole liquid is developed. For plasmon wavelengths smaller than the size of charged domains, plasmon dispersion is found to be omega proportional to q(1/4). The frequency, velocity, and direction...
متن کاملSnake states along graphene p-n junctions.
We investigate transport in locally gated graphene devices, where carriers are injected and collected along, rather than across, the gate edge. Tuning densities into the p-n regime significantly reduces resistance along the p-n interface, while resistance across the interface increases. This provides an experimental signature of snake states, which zigzag along the p-n interface and remain stab...
متن کاملCommon-path interference and oscillatory Zener tunneling in bilayer graphene p-n junctions.
Interference and tunneling are two signature quantum effects that are often perceived as the yin and yang of quantum mechanics: a particle simultaneously propagating along several distinct classical paths versus a particle penetrating through a classically inaccessible region via a single least-action path. Here we demonstrate that the Dirac quasiparticles in graphene provide a dramatic departu...
متن کاملSnake trajectories in ultraclean graphene p–n junctions
Snake states are trajectories of charge carriers curving back and forth along an interface. There are two types of snake states, formed by either inverting the magnetic field direction or the charge carrier type at an interface. The former has been demonstrated in GaAs-AlGaAs heterostructures, whereas the latter has become conceivable only with the advance of ballistic graphene where a gap-less...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ECS Transactions
سال: 2019
ISSN: 1938-6737
DOI: 10.1149/1.3569920